If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+40x+5000=14600
We move all terms to the left:
2x^2+40x+5000-(14600)=0
We add all the numbers together, and all the variables
2x^2+40x-9600=0
a = 2; b = 40; c = -9600;
Δ = b2-4ac
Δ = 402-4·2·(-9600)
Δ = 78400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{78400}=280$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-280}{2*2}=\frac{-320}{4} =-80 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+280}{2*2}=\frac{240}{4} =60 $
| b+5b-3b=18 | | 2(h−3)=6 | | c+100=6c-40 | | 3/4x+1=-8;12 | | 7h+h-6h+h+3h=12 | | 6y-74+7y-58=180 | | -6=-4(p−18)+2 | | 3z-10=2z | | 6a-66+5a+15=180 | | 9y^2-30y+22=0 | | 5z-7=9z-47 | | 0.90x=522 | | 13z+7z=-20 | | 5−c=2 | | 16/8=x/20 | | 915=1500x-35 | | 6x-81=4x-49 | | 209=-6-5(7x-1) | | x+23=5x+15 | | 2z−3=1 | | 3(d−5)=6 | | 5(4x-3)=2(x-7)-8 | | (2x+3)(x+4)=67 | | 6u+u-u=18 | | x+84=5x+64 | | 6x-16=x^2-4x | | 2x+1=1.78-1.9x | | 14t-28=7(t-6) | | X-16=x•-2=-46 | | 2(y−5)=2 | | 2x+24+2x+24=180 | | 2x+24+2x+24=190 |